Description
Electromagnetic braking system has dramatically increased in popularity in recent years. Since 1987, numerous articles about magnetic braking were published. These articles describe both experiments dealing with magnetic braking, as well as the theory behind the phenomenon. Magnetic braking works because of induced currents and Lenz’s law. If you attach a metal plate to the end of a pendulum and let it swing, its speed will greatly decrease when it passes between the poles of a magnet.
When the plate enters the magnetic field, an electric field is induced in metal and circulating eddy currents are generated. These currents act to oppose the change in flux through the plate, in accordance with Lenz’s Law.
The currents in turn heat the plate, thereby reducing its kinetic energy. The practical uses for magnetic braking are numerous and commonly found in industry today. This phenomenon can be used to damp unwanted nutations in satellites, to eliminate vibrations in spacecrafts, and to separate nonmagnetic metals from solid waste.
Reviews
There are no reviews yet.